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A b s t r a c t

The phenomenon of circulating cell-free DNA (cfDNA) is important for many 
biomedical disciplines including the field of exercise biochemistry and phys-
iology. It is likely that cfDNA is released into the plasma by apoptosis of 
endothelial cells and circulating endothelial progenitor cells (EPCs), and/
or by NETosis of immune cells induced by strenuous exercise. Increases of  
cfDNA are described to be a  potential hallmark for the overtraining syn-
drome, and might be related to aseptic vascular inflammation in athletes. 
Yet, the relevance of systemic inflammation and cfDNA with endothelial dys-
function in athletes still remains unclear. In this review article, we provide 
a current overview of exercise-induced cfDNA release to the circulation with 
special emphasis on its relationship with apoptosis and NETosis and the 
effect of hypoxic physical activity on vascular inflammation in athletes.
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Introduction

It has been shown that vascular endothelial dysfunction precedes the 
development of arteriosclerosis, and thereafter plays an important role in 
its progression. Therefore, preservation or recovery of endothelial function 
is important to inhibit the development of cardiovascular events [1]. Sever-
al biomarkers have been proposed to investigate endothelial dysfunction, 
including insulin resistance, homocysteinemia, inflammatory cytokines, 
oxidized lipoproteins LDL and HDL, reactive oxygen and nitrogen species, 
vasodilators and vasoconstrictors (Table I) [2–21]. Recent studies have also 
suggested that dysfunctional HDL might be very effective and predictive 
biomarker of endothelial impairment as well as cardiovascular risk [22–26].

The newest studies demonstrate that cell-free DNA (cfDNA) could 
serve as an auxiliary biomarker of vascular endothelial dysfunction and 
cardiometabolic risk assessment [6, 27, 28]. The mechanisms of the oc-
currence of cfDNA fragments in blood under normal and pathological 
conditions are not yet fully understood. The sequence analysis of circulat-
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ing DNA in normal human plasma demonstrated 
that cfDNA fragments are derived from apoptotic 
cells but not from necrotic cells. The mean values 
of cfDNA length were ∼180 bp in the culture su-
pernatant of apoptotic cells, while DNA fragments 
larger than ∼10,000 bp are observed in the culture 
of cells undergoing necrosis. Their 5′ and 3′ ends 
were rich in cytosine and guanidine, respectively, 
and they presented in the 5′ end characteristic 
(protruding) forms of double-stranded DNA. The 
cfDNA concentrations in normal plasma samples 
were 3.6–5.0 ng/ml [29]. The cfDNA fragments ap-
parently circulate as nucleoprotein complexes, but 
the main part of cfDNA is found adsorbed to the 
surface of blood cells in healthy individuals [30].

A  novel fascinating explanation of how DNA 
can actively be released under inflammatory con-
ditions has recently become apparent by the dis-
covery of an evolutionarily highly conserved first-
line defense mechanism that allows neutrophils 
to expel their DNA in response to infectious or 
endogenous factors, thereby forming a meshwork 
of chromatin and proteins, termed neutrophil ex-
tracellular traps (NETs). Accumulating evidence in-
dicates that formation of NETs plays a pivotal role 
in the immune response to both pathogens and 
physical exercise [27].

Strenuous exercise, which consists of high-force 
eccentric exercises interspersed with long-dura-
tion endurance exercises at mild- to moderate-in-
tensity work or regular high-intensity workouts, 
induces a  slow and constant release of cfDNA. 

During incremental treadmill running the capillary 
cfDNA concentrations increased nearly parallel 
to the lactate values. The values correlated best 
with heart rate and energy expenditure, followed 
by oxygen consumption and lactate levels [24]. 
After chronic excessive resistance exercise, cfDNA 
level increased in proportion to muscle damage 
(CK increase) and systemic inflammation (hsCRP 
increase), suggesting that plasma DNA may be 
a  sensitive marker for overtraining-induced in-
flammation [30–33].

It is likely that cfDNA is released into the plas-
ma by apoptosis of endothelial cells and circulat-
ing endothelial progenitor cells, and/or by NETosis  
of immune cells induced by strenuous exercise 
[34]. According to Angeli et al. [35] the generation 
of pro-inflammatory and pro-apoptotic mediators 
disturbs vascular endothelial activity. However, the 
relevance of cfDNA with inflammation and endo-
thelium function in athletes still remains unclear. It 
is well known that marathon, rowing, soccer, ten-
nis, handball and basketball cause activation of 
immune cells, which synthesize large quantities of 
pro-inflammatory and pro-apoptotic cytokine tumor 
necrosis factor-α (TNF-α) that can be responsible for 
vascular endothelial dysfunction [1, 36–43].

In this review article, we provide a current over-
view of exercise-induced cfDNA release to the 
circulation with special emphasis on its relation-
ship with apoptosis and NETosis and the effect 
of hypoxic training on vascular inflammation in 
athletes.

Table I. Changes in biomarkers of vascular endothelial dysfunction

Markers Direction  
of change

References

Adiponectin ↓ [2–4] 

Adhesion molecules: vascular cell adhesion molecule (VCAM), intercellular 
adhesion molecule (ICAM), P-selectin, E-selectin

↑ [5]

Circulating cell-free DNA (cfDNA) ↑ [6]

Circulating microRNA (miRNA) ↑ [7]

Endothelial progenitor cells (EPCs) ↓ [8, 9]

Endogenous inhibitors of nitric oxide synthase (NOS): asymmetric  
dimethyl-arginine (ADMA)

↑ [10]

Homocysteine (Hcy) ↑ [11]

Insulin resistance ↑ [12]

Inflammatory factors: C-reactive protein (CRP), interleukin 1β (IL-1β), IL-6, IL-12, 
IL-17, tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 
(MCP-1)

↑ [6, 9, 13–15]

Lipoproteins LDL, oxidized LDL (oxLDL) and oxidized HDL (oxHDL) ↑ [6, 16, 17]

Peroxynitrite (ONOO–) ↑ [9, 18, 19]

Thrombotic hemostatic factors: plasminogen activator inhibitor-1 (PAI-1), tissue 
plasminogen activator (TPA), von Willebrand factor, thrombomodulin

↑ [9, 20]

Vasoconstrictors: endothelin, thromboxane A2, reactive oxygen and nitrogen 
species (RONS)

↑ [9, 19, 21]

Vasodilators: nitrite and nitrate, 6-keto PGF1α ↑ [9]
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Physical activity and vascular inflammation

Physical activity has significant beneficial ef-
fects on overall health, and especially on cardio-
vascular morbidity and mortality. Regular physical 
activity significantly attenuates the atherosclerot-
ic process by reducing atherosclerotic risk factors, 
retarding arterial wall aging, delaying develop-
ment of endothelial dysfunction and preserving 
vascular function. Furthermore, regular physical 
activity reduces vascular oxidative stress, increas-
es NO production via endothelial NOS (eNOS), 
modifies the lipid profile [44–46], inhibits the pro-
duction of pro-inflammatory and pro-apoptotic 
cytokine TNF-α [47], and also decreases both ox-
idative stress and the circulating concentrations 
of ADMA [48]. It is stressed that observations 
were performed on healthy non-active subjects 
or patients with coronary artery disease [49, 50]. 
It is still not known how pro-inflammatory and 
pro-apoptotic molecules affect endothelial cells’ 
activity in highly trained subjects.

There were a  few observations concerning 
changes in markers of endothelial activity in elite 
athletes following intense training periods or af-
ter finishing their sport career. It is known that 
the detraining period induces a rapid increase in 
total cholesterol (TC) and lipoprotein LDL, which 
elevates the risk of cardiovascular disease [51]. 
In our recent project, a high level of total choles-
terol in 43% of elite Greco-Roman wrestlers was 
observed. The average concentrations of serum 
total cholesterol, lipoprotein HDL and LDL as well 
as triglycerides were 193, 51, 120 and 108 mg/dl, 
respectively (unpublished data). We do not know 
whether the observed changes in lipid profile are 
temporary, whether they are related to endotheli-
al dysfunction, and what the health implications 
for the future are. Maron et al. [52] estimated 
that 18.5% of incidents of sudden death in young 
athletes (< 35 years old) were related to vascular 
endothelial dysfunction and atherosclerotic cor-
onary artery disease. According to Suarez-Mier 
et al. [53], the sports most frequently associated 
with sudden death were cycling (29%), soccer 
(25.5%), running (8.9%) and gymnastics (6.5%). 
Approximately 70% cases were not related to 
some personal pathological antecedents or famil-
ial sudden deaths. De Van and Seals [54] observed 
that masters endurance athletes demonstrate 
a  more favorable arterial phenotype and lower 
risk of CVD compared with untrained middle-aged 
and older adults. In contrast, masters athletes for 
whom training and competitive sport require pri-
marily or exclusively intensive resistance muscle 
activities exhibit a  less favorable arterial func-
tion-structure profile. The differences in arterial 
properties between masters athletes participating 
in endurance sports vs. resistance training-requir-

ing sports are likely explained by differences in the 
intravascular mechanical forces generated during 
these activities. Agrotou et al. [55] demonstrated 
that the type of anaerobic exercise, e.g. weight-
lifting, is an important determinant of subclinical 
atherosclerosis such as intima-media thickness 
and flow-mediated dilation. 

Apoptosis and vascular inflammation

Vascular inflammation is an early marker of 
endothelial dysfunction prior to the development 
of structural changes and clinical symptoms, con-
tributes to the progression of atherosclerosis, and 
increases the risk of coronary events. Studies over 
the past year have demonstrated the significance 
of inflammation in endothelial apoptosis [56–58].

In athletes, endothelial apoptosis can be trig-
gered through several pathways. One of them can 
be induced by the binding of TNF-α to one or more 
of the extracellular receptors of the tumor necrosis 
factor receptor (TNFRs) superfamily located on the 
surface of macrophages, T lymphocytes and endo-
thelial cells. The binding of this ligand to its recep-
tors ultimately leads to the activation of a specific 
set of proteases crucial for the execution of apop-
tosis. These proteases are collectively referred to 
as caspases, and they are activated by proteolytic 
cleavage. Caspases have the ability to cleave and 
activate other caspases in a “cascade-like” fashion. 
This serves as an efficient and potent mechanism 
for amplifying the cell death signal. Ultimately, 
caspase activation is responsible for the biochem-
ical breakdown of cytosolic and nuclear targets 
leading to the distinct morphological features of 
apoptosis. Recruitment of procaspase 8 to the plas-
ma membrane results in feedforward recruitment 
of more procaspase-8 proteins. This caspase-8 
accumulation forms a  death-inducing signaling 
complex at the plasma membrane, resulting in 
caspase-8 activation. Activated caspase-8 can then 
directly cleave and activate caspase-3. Caspase-3 
exerts its apoptotic effect by cleaving key structur-
al proteins of the plasma membrane and nuclear 
envelope, leading to the structural breakdown of 
the cell. However, this enzyme mediates its pri-
mary effects within the nucleus of the cell. Acti-
vated caspase-3 translocates from the cytosol to 
the nucleus, where it cleaves and deactivates an 
inhibitor of caspase-activated DNase. This releas-
es caspase-activated DNase, and endonuclease, 
enabling the cleavage of genomic DNA. This DNA 
fragmentation is one of the hallmark morphologi-
cal features of apoptosis [34, 59].

In athletes, a  high concentration of TNF-α 
can also induce endothelial apoptosis through 
disturbance of the equilibrium between eNOS 
and inducible NOS (iNOS) activities, resulting in 
pro-apoptotic NO activity, and finally disturbanc-
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es in vascular endothelial activity which precedes 
the development of arteriosclerosis [19, 58]. The 
excess NO reacts with the superoxide anion to 
produce peroxynitrite (ONOO–) by 1 000 000-fold. 
ONOO– in turn-can “uncouple” eNOS to become 
a  dysfunctional superoxide-generating enzyme 
that contributes to vascular oxidative stress. Ox-
idative stress and endothelial dysfunction can 
promote atherogenesis. Without superoxide, the 
formation of ONOO– by the reaction of NO with 
oxygen is minimal. Nitric oxide and superoxide do 
not even have to be produced within the same cell 
to form peroxynitrite, because NO can so readily 
move through membranes and between cells [19].

Athletes have demonstrated significantly high-
er levels of reactive oxygen and nitrogen species 
[60] and TNF-α [35–41], which can serve as pre-
dictors of overtraining-induced inflammation [37, 
43]. Survey research involving endurance athletes 
who completed monocycle training indicated 
a rate of overtraining syndrome of approximately 
10% (range: 7–21%) [61].

Netosis and vascular inflammation

Recently, a novel mechanism of cfDNA release 
at inflammation sites was described. Upon activa-
tion, neutrophils release NETs composed of DNA  
fibers decorated with granular proteins. Neutrophil 
extracellular traps are produced by neutrophils 
and other immune cells, in contact with patho-
gens, a variety of host factors such as activated 
platelets, inflammatory mediators or reactive oxy-
gen and nitrogen species (Table II) [62–76].

Neutrophil extracellular traps are the results 
of a  unique form of cell death that morphologi-
cally is characterized by the loss of intracellular 

membranes before the integrity of the plasma 
membrane is compromised. To release NETs, ac-
tivated neutrophils undergo dramatic morpholog-
ical changes. Minutes after activation, they flatten 
and firmly attach to the substratum. During the 
next hour, the nucleus loses its lobules, the chro-
matin decondenses, and the inner and outer nu-
clear membranes progressively detach from each 
other. Concomitantly, the granules disintegrate. 
After 1 h, the nuclear envelope disaggregates into 
vesicles and the nucleoplasm and cytoplasm form 
a homogeneous mass. Finally, the cells round up 
and seem to contract until the cell membrane rup-
tures and the interior of the cell is ejected into the 
extracellular space, forming NETs. Notably, despite 
the intermixing of cellular compartments, during 
the last phase of NETosis, < 30 proteins are pres-
ent in NETs. Most of them originate from granules, 
a few are from the nucleus, and cytoplasmic NET 
components are rare. NETosis is morphologically 
quite different from apoptosis and necrosis (Fig-
ure 1) [62, 70, 77, 78]. 

Beiter et al. [27] were the first to demonstrate 
evidence of exhaustive exercise-induced release 
of NETs. Their observation opened a new avenue 
to understand exercise immunology. The authors 
stressed that future work is necessary to explain 
whether this phenomenon is a  remnant of the 
ancient human fight-or-flight response or wheth-
er NETs represent a fundamental layer of the im-
mune response to exercise.

Physical activity in hypoxia and endothelial 
repair

Endothelial cell injury initiates regenerative 
processes. The first step is the mobilization of 

Table II. Exogenous and endogenous factors which stimulate the formation of NETs

Factors References

Calcium ions Ca2+ [63]

Glucose oxidase (GOx) catalyzes the oxidation of β-D-glucose to gluconic acid with simultaneous 
production of H2O2

[64]

Granulocyte-macrophage colony-stimulating factor (GM-CSF) + C5a
Granulocyte-macrophage colony-stimulating factor (GM-CSF) + LPS

[65, 66]

Inflammatory factors: interleukin 8 (IL-8), interleukin 1β (IL-1β), tumor necrosis factor-α (TNF-α), 
interferon γ (IFN-γ)

[63, 66, 67]

Lipopolysaccharide (LPS)
Lipophosphoglycan (LPG)

[68–70]

M1-protein-fibrinogen complex [71]

Panton-Valentine leukocidin (PVL) [72]

Pathogens: bacteria, fungi, viruses, parasites [68–70, 72]

Platelet activating factor (PAF) [73]

Reactive oxygen and nitrogen species: hydrogen peroxide (H2O2), nitric oxide (NO) [74]

Statins: lovastatin, simvastatin, fluvastatin and mevastatin [75]

Platelet via toll-like receptor 4 (TLR-4) [76]
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endothelial progenitor cells (EPCs) from the bone 
marrow into peripheral blood, which is followed 
by the recruitment of EPCs to the site of vascu-
lar injury. Decreased numbers of circulating EPCs 
are seen in patients with coronary risk factors and 
reflect senescence, endothelial dysfunction, im-
paired vascular repair, and increased cardiovascu-
lar events. Enhancement of EPCs is considered one 
of the most promising therapeutic alternatives for 
cardiovascular disease. The process of EPC mobi-
lization leads to accelerated re-endothelialization, 
successfully achieved by erythropoietin and other 
growth factors [1]. 

Endothelial progenitor cells count is related to 
age and health status, and increases in response 
to physical exercise [8, 79–83] and hypoxia [84, 
85] that occurs at high altitude. Ciulla et al. [84] 
observed in the Himalayas that high-altitude hy-
poxia and exercise oxygen demands are strong 
stimuli for clonogenic endothelial cell activation 
and activity, as shown by the increase in the num-
ber of EPCs. However, Mancuso et al. [86] found 
that circulating hematopoietic stem cells, circulat-
ing endothelial cells and EPC counts significantly 
decreased in 15 mountain trekkers after 12 days 
spent at > 3000 m. Strenuous exercise with expo-

sure to hypobaric hypoxia can be dangerous for 
athletes with endothelial dysfunction [87]. 

Physical training in hypoxia (hypobaric hypoxia) 
has been used for decades by Olympic and pro-
fessional athletes to increase endurance, strength 
and speed, avoid fatigue and improve recovery 
[88, 89]. Recently, intermittent hypoxic training 
(IHT, normobaric hypoxia) was introduced into 
sport practice. Intermittent hypoxic training is 
a method by which athletes receive exposure to 
short bouts of severe hypoxia (9–12% O2), inter-
spersed with periods of normal air. The studies 
reported substantial improvements in sea level 
endurance and anaerobic performance after IHT 
at rest or during exercise. These enhancements 
suggest that IHT may be suitable for improving 
performance in high intensity team sports. Be-
side the effects of the hypoxic stimuli on exercise 
performance, there is recent evidence that inter-
mittent hypoxic training or therapy (IHT) might be 
beneficial for endothelial cell activity [89, 90].

It is still not known whether normobaric hypoxia 
affects the circulating EPC number and whether IHT 
can reduce vascular inflammation in athletes. We 
observed a significant decrease in total cholesterol 
(by 10–15%) and its classes following IHT (unpub-
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Figure 1. Schematic representation and differences between apoptosis, necrosis and NETosis

cfDNA – Circulating cell free DNA, cfRNA – circulating cell free RNA, AGO – Argonaute protein, MPO – myeloperoxidase,  
NE – neutrophil elastase, RONS – reactive oxygen and nitrogen species, miRNAs – short noncoding RNAs (19–25 nucleotides) 
that modulate gene expression at the posttranscriptional level and play important roles in a wide range of physiological and 
pathological processes [62, 77, 78]
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lished data). According to the consensus statement 
of the European Society of Cardiology, a decrease 
in serum cholesterol by 10% results in a reduction 
of cardiac artery disease by 20% [91]. However, we 
simultaneously observed an approximately 2-fold 
increase in hsCRP concentration in Greco-Roman 
wrestlers after 6-day normobaric hypoxia exposure 
(before IHT 1.45 ±0.33 mg/dl, after IHT 2.89 ±0.54) 
(unpublished data). The newest study indicates 
a significant correlation between serum hsCRP and 
the severity of coronary artery involvement [92]. 
Hence, further studies are recommended to be con-
ducted on this issue in athletes.

Conclusions and future directions

The analysis of plasma cfDNA in relation to 
physical activity is currently being intensively 
studied, and this experience may determine the 
monitoring of overtraining-induced inflammation 
in the future. 

Strenuous exercise, which consists of high-force 
eccentric exercises interspersed with long-dura-
tion endurance exercises at mild- to moderate-in-
tensity work or regular high-intensity workouts, 
induces a slow and constant release of cfDNA. The 
elevated cfDNA level in both non-athletes and ath-
letes is associated with markers of vascular en-
dothelial dysfunction such as cytokines IL-1β, IL-6 
and TNF-α, hsCRP, oxidized lipoproteins as well 
as reactive oxygen and nitrogen species, etc. The 
main source of cfDNA is apoptosis of endothelial 
cells and circulating endothelial progenitor cells 
as well as NETosis of immune cells which move 
toward the site of vascular injury.

Physical exercise in hypoxia (hypobaric or nor-
mobaric hypoxia) is considered as a  therapeutic 
modality in delaying development of endotheli-
al dysfunction and preserving vascular function. 
However, to develop appropriate hypoxia interven-
tion guidelines, it is necessary to gain a deeper un-
derstating of how, when, and why hypoxia inter-
feres with basic immune and repair mechanisms 
including EPC mobilization.
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